Interface Engineering in Perovskite Solar Cells by Low Concentration of Phenylethyl Ammonium Iodide Solution in the Antisolvent Step

نویسندگان

چکیده

In spite of the outstanding properties metal halide perovskites, its polycrystalline nature induces a wide range structural defects that results in charge losses affect final device performance and stability. Herein, surface treatment is used to passivate interfacial vacancies improve moisture tolerance. A functional organic molecule, phenylethyl ammonium iodide (PEAI) salt, dissolved with antisolvent step. The additive at low concentration does not induce formation low-dimensional perovskites species. Instead, species perovskite grain boundaries, which an effective passivation. For sake generality, this facile solution-processed synthesis was studied for different compositions, standard MAPbI3, double cation MA0.9Cs0.1PbI3 MA0.5FA0.5PbI3, increasing average photoconversion efficiency compared reference cell by 18%, 32%, 4% respectively, observed regular, n-i-p, inverted, p-i-n, solar configurations. This analysis highlights generality approach materials order reduce nonradiative recombination as impedance spectroscopy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution.

An optimal small amount of water added into methyl ammonium iodide (MAI) solution in isopropyl alcohol (IPA) helps perovskite crystallization and leads to larger grain size from sequential deposition of perovskite films. The concentration of water was varied from 1% to 7% (vol% of IPA) in MAI solution and optical absorption, crystallization, morphology of perovskite films and their photovoltaic...

متن کامل

Application of Au@SiO2 Plasmonic Nanoparticles at Interface of TiO2 Mesoporous Layers in Perovskite Solar Cells

To investigate the plasmonic effect in perovskite solar cells, the effect of depositing Au@SiO2 nanoparticles on the top and the bottom of mesoporous TiO2 layers was studied. First, Au@SiO2 nanoparticles were synthesized. The particles were then deposited at the different interfaces of mesoporous TiO2 layers. Although the two structures show approximately similar optical absorption, only cells ...

متن کامل

study of cohesive devices in the textbook of english for the students of apsychology by rastegarpour

this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...

Ionic transport in hybrid lead iodide perovskite solar cells

Solar cells based on organic-inorganic halide perovskites have recently shown rapidly rising power conversion efficiencies, but exhibit unusual behaviour such as current-voltage hysteresis and a low-frequency giant dielectric response. Ionic transport has been suggested to be an important factor contributing to these effects; however, the chemical origin of this transport and the mobile species...

متن کامل

Photoinduced processes in lead iodide perovskite solid-state solar cells

Organic-inorganic hybrid systems based on lead halide compounds have recently encountered considerable success as light absorbers in solid-state solar cells. Herein we show how fundamental mechanistic processes in mesoporous oxide films impregnated with CH3NH3PbI3 can be investigated by time resolved techniques. In particular, charge separation reactions such as electron injection into the tita...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energy technology

سال: 2021

ISSN: ['2194-4288', '2194-4296']

DOI: https://doi.org/10.1002/ente.202100890